Compartir
Exploratory Data Analysis with Python Cookbook: Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data (en Inglés)
Ayodele Oluleye
(Autor)
·
Packt Publishing
· Tapa Blanda
Exploratory Data Analysis with Python Cookbook: Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data (en Inglés) - Oluleye, Ayodele
Más barato Libro Nuevo
Importado
*
Envío: 16 a 21 días háb.
S/ 464,22S/ 232,11
Más rápido Libro Nuevo
Importado
*
Envío: 14 a 19 días háb.
S/ 486,81S/ 243,40
* Costos de importación incluídos en el precio ✅
Origen: Estados Unidos
Costos de importación incluídos en el precio ✅
Se enviará desde nuestra bodega entre el
Martes 27 de Enero y el
Martes 03 de Febrero.
Lo recibirás en cualquier lugar de Perú entre 2 y 5 días hábiles luego del envío.
Origen: Reino Unido
Costos de importación incluídos en el precio ✅
Se enviará desde nuestra bodega entre el
Viernes 23 de Enero y el
Viernes 30 de Enero.
Lo recibirás en cualquier lugar de Perú entre 2 y 5 días hábiles luego del envío.
Reseña del libro "Exploratory Data Analysis with Python Cookbook: Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data (en Inglés)"
Extract valuable insights from data by leveraging various analysis and visualization techniques with this comprehensive guidePurchase of the print or Kindle book includes a free PDF eBookKey Features: Gain practical experience in conducting EDA on a single variable of interest in PythonLearn the different techniques for analyzing and exploring tabular, time series, and textual data in PythonGet well versed in data visualization using leading Python libraries like Matplotlib and seabornBook Description: Exploratory data analysis (EDA) is a crucial step in data analysis and machine learning projects as it helps in uncovering relationships and patterns and provides insights into structured and unstructured datasets. With various techniques and libraries available for performing EDA, choosing the right approach can sometimes be challenging. This hands-on guide provides you with practical steps and ready-to-use code for conducting exploratory analysis on tabular, time series, and textual data.The book begins by focusing on preliminary recipes such as summary statistics, data preparation, and data visualization libraries. As you advance, you'll discover how to implement univariate, bivariate, and multivariate analyses on tabular data. Throughout the chapters, you'll become well versed in popular Python visualization and data manipulation libraries such as seaborn and pandas.By the end of this book, you will have mastered the various EDA techniques and implemented them efficiently on structured and unstructured data.What You Will Learn: Perform EDA with leading Python data visualization librariesExecute univariate, bivariate, and multivariate analyses on tabular dataUncover patterns and relationships within time series dataIdentify hidden patterns within textual dataDiscover different techniques to prepare data for analysisOvercome the challenge of outliers and missing values during data analysisLeverage automated EDA for fast and efficient analysisWho this book is for: If you are a data analyst interested in the practical application of exploratory data analysis in Python, then this book is for you. This book will also benefit data scientists, researchers, and statisticians who are looking for hands-on instructions on how to apply EDA techniques using Python libraries. Basic knowledge of Python programming and a basic understanding of fundamental statistical concepts is a prerequisite.